B.SC. THIRD SEMESTER (PROGRAMME) EXAMINATION, 2021

Subject: Mathematics

Course Code: SP/MTH/304/SEC-1

Time: 2 Hours

The figures in the margin indicate full marks.

Notations and symbols have their usual meaning

- 1. Answer any five questions:
 - (a) A relation ρ is defined on the set Z by "xρy if and only if x + y is odd" for x, y ∈ Z.
 Examine if ρ is an equivalence relation on Z.
 - (b) Find all equivalence relations on the set $A = \{1, 2, 3\}$.
 - (c) If $A = \{1, 2\}, B = \{2, 3\}$ and $C = \{3, 4\}$, then find $A \times (B \cup C)$.
 - (d) If A and B are two non-empty sets, then prove that $A \cup B = (A B) \cup B$.
 - (e) If *X*, *Y*, *A* are three non-empty sets such that $A \cap X = A \cap Y$ and $A \cup X = A \cup Y$, then prove that X = Y.
 - (f) If n(A) and n(B) denote the number of elements in the finite sets A and B respectively and n(A) = p and n(B) = q, then find number of relations from A to B?
 - (g) Construct a truth table for the statement formula ($\sim a \land \sim b$).
 - (h) Find the negation of the following statement: $\exists x \ p(x) \land y \ q(y)$.

2. Answer any four questions:

- (a) (i) Prove that $A (B \cap C) = (A B) \cup (A C)$, where A, B, C are subsets of a set X.
- (ii) Show that $A \cap B = A$ if and only if $A \subseteq B$. 3+2
- (b) (i) If n(A) and n(B) denote the number of elements in the finite sets A and B respectively, then prove by Venn diagram, that n(A ∪ B) = n(A) + n(B) n(A ∩ B).
 - (ii) If $A \cup B = B$, then prove that $A = \phi$ or $A \subset B$ 3+2
- (c) A relation ρ is defined on \mathbb{Z} by " $x\rho y$ iff 2x + 3y is divisible by 5" then prove that ρ is an equivalence relation on \mathbb{Z} .

Course ID: 32110

Course Title: Logic and Sets

Full Marks: 40

 $2 \times 5 = 10$

 $5 \times 4 = 20$

(d) (i) Let ρ be an equivalence relation on a set X and $a, b \in X$. Then prove that the classes cl(a) and cl(b) are either equal or disjoint.

(ii) The relation ρ is defined on the set \mathbb{R} by " $x\rho y$ iff x is less than or equal to y" for all $x, y \in \mathbb{R}$. Examine if ρ is a partial order relation. 3+2

- (e) It is known that in a university 60% of professors play tennis, 50% of them play bridge,70% jog, 20% play tennis and bridge, 40% play bridge and jog and 30% play tennis and jog. If someone claimed that 20% professors' jog and play tennis and bridge, would you believe his claim? Why?
- (f) (i) Construct a truth table for the statement form:
- $(p \lor q) \leftrightarrow [(\sim p) \land r) \rightarrow (p \land r)].$
 - (ii) Write negation of the following statement: If I am ill, then I cannot go to college.

3 + 2 = 5

- 3. Answer any one question: $10 \times 1 = 10$
- (a) (i) Let A, B be two subsets of a universal set. Prove that A = B if and only if $A\Delta B = \phi$.
- (ii) For any two sets A and B, prove that $A \cup (A \cap B) = A$.
- (iii) A relation ρ is defined on Z by "xρy if and only if xy ≥ 0" for all x, y ∈ Z. Examine if
 ρ is an equivalence relation on Z.
- (b) (i) Let p, q, r be statements. Then show that $p \land (q \lor r) = (p \land q) \lor (p \land r)$ holds by truth table.
 - (ii) A relation ρ is defined on the set \mathbb{Z} by " $x\rho y$ if and only if $|x y| \le 3$ " for $x, y \in \mathbb{Z}$. Examine if ρ is reflexive, symmetric and transitive.
- (iii) If ρ is an equivalence relation on a set A, then show that ρ^{-1} is also an equivalence relation on A. 3+3+4
