B.SC. THIRD SEMESTER (PROGRAMME) EXAMINATION, 2021

Subject: Mathematics
Course Code: SP/MTH/304/SEC-1
Time: 2 Hours
Course Title: Logic and Sets
Full Marks: 40

The figures in the margin indicate full marks.

Notations and symbols have their usual meaning

1. Answer any five questions: $2 \times 5=10$
(a) A relation ρ is defined on the set \mathbb{Z} by " $x \rho y$ if and only if $x+y$ is odd" for $x, y \in \mathbb{Z}$. Examine if ρ is an equivalence relation on \mathbb{Z}.
(b) Find all equivalence relations on the set $A=\{1,2,3\}$.
(c) If $A=\{1,2\}, B=\{2,3\}$ and $C=\{3,4\}$, then find $A \times(B \cup C)$.
(d) If A and B are two non-empty sets, then prove that $A \cup B=(A-B) \cup B$.
(e) If X, Y, A are three non-empty sets such that $A \cap X=A \cap Y$ and $A \cup X=A \cup Y$, then prove that $X=Y$.
(f) If $n(A)$ and $n(B)$ denote the number of elements in the finite sets A and B respectively and $n(A)=p$ and $n(B)=q$, then find number of relations from A to B ?
(g) Construct a truth table for the statement formula ($\sim a \wedge \sim b$).
(h) Find the negation of the following statement: $\exists x p(x) \wedge y q(y)$.
2. Answer any four questions:
(a) (i) Prove that $A-(B \cap C)=(A-B) \cup(A-C)$, where A, B, C are subsets of a set X.
(ii) Show that $A \cap B=A$ if and only if $A \subseteq B$.
(b) (i) If $n(A)$ and $n(B)$ denote the number of elements in the finite sets A and B respectively, then prove by Venn diagram, that
$n(A \cup B)=n(A)+n(B)-n(A \cap B)$.
(ii) If $A \cup B=B$, then prove that $A=\phi$ or $A \subset B$
(c) A relation ρ is defined on \mathbb{Z} by " $x \rho y$ iff $2 x+3 y$ is divisible by 5 " then prove that ρ is an equivalence relation on \mathbb{Z}.
(d) (i) Let ρ be an equivalence relation on a set X and $a, b \in X$. Then prove that the classes $c l(a)$ and $c l(b)$ are either equal or disjoint.
(ii) The relation ρ is defined on the set \mathbb{R} by " $x \rho y$ iff x is less than or equal to y " for all $x, y \in \mathbb{R}$. Examine if ρ is a partial order relation.
(e) It is known that in a university 60% of professors play tennis, 50% of them play bridge, 70% jog, 20% play tennis and bridge, 40% play bridge and jog and 30% play tennis and jog. If someone claimed that 20% professors' jog and play tennis and bridge, would you believe his claim? Why?
(f) (i) Construct a truth table for the statement form:

$$
(p \vee q) \leftrightarrow[(\sim p) \wedge r) \rightarrow(p \wedge r)] .
$$

(ii) Write negation of the following statement: If I am ill, then I cannot go to college.

$$
3+2=5
$$

3. Answer any one question:
(a) (i) Let A, B be two subsets of a universal set. Prove that $A=B$ if and only if $A \Delta B=\phi$.
(ii) For any two sets A and B, prove that $A \cup(A \cap B)=A$.
(iii) A relation ρ is defined on \mathbb{Z} by " $x \rho y$ if and only if $x y \geq 0$ " for all $x, y \in \mathbb{Z}$. Examine if ρ is an equivalence relation on \mathbb{Z}.
(b) (i) Let p, q, r be statements. Then show that $p \wedge(q \vee r)=(p \wedge q) \vee(p \wedge r)$ holds by truth table.
(ii) A relation ρ is defined on the set \mathbb{Z} by " $x \rho y$ if and only if $|x-y| \leq 3$ " for $x, y \in \mathbb{Z}$. Examine if ρ is reflexive, symmetric and transitive.
(iii) If ρ is an equivalence relation on a set A, then show that ρ^{-1} is also an equivalence relation on A.
